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Using the assumptions of an incompressible and viscous flow at large Reynolds 
number, we derive the evolution equation for the wave action density of an instability 
wave travelling on top of a laminar free-shear flow. The instability is considered to be 
viscous; the purpose of the present work is to include the cumulative effect of the 
(locally) small viscous correction to the wave, over length and time scales on which the 
underlying base flow appears inhomogeneous owing to its viscous diffusion. As such, 
we generalize our previous work for inviscid waves. This generalization appears as an 
additional (but usually non-negligible) term in the equation for the wave action. The 
basic structure of the equation remains unaltered. 

1. Introduction 
The propagation of modal waves on slightly non-uniform or unsteady base flows can 

produce many interesting effects. Two important entities that describe these effects are 
the wave action d and its flux Gd, where G is the group velocity. In the classical 
theories for conservative systems, these two entities are related by a ‘continuity 
equation ’ that expresses a conservation law over the long spatio-temporal scales 
associated with the non-uniformity (or inhomogeneity) of the base flow (Whitham 
1974; Hayes 1970). 

Over the years, there have been many attempts to generalize these concepts to non- 
conservative systems, specifically, to instability waves riding on top of ‘diverging’ base 
flows. Invariably, these generalizations are formulated in terms of an amplitude 
function A ,  rather than the wave action d (see Ho & Huerre 1984 and references cited 
therein). Therefore, even in the simplest case, any correspondence between classical 
kinematic wave theory and the stability of non-parallel base flows is completely lost. 
The equation for the amplitude contains a large number of terms that are difficult to 
interpret, but whose combinations in a certain way form the modal wave action and 
the group velocity. 

In an attempt to provide such a correspondence, the author formulated the 
linearized instability of non-parallel flows in terms of a complex wave action density, 
d ,  and derived an evolution equation for this entity (Balsa 1989; referred to as (B) 
herein). While the derivation in (B) is very general, it does invoke the assumption that 
the instability wave is inviscid; this assumption turns out to be unnecessary for a large 
class of flows and the analysis of (B) applies for a viscous instability wave as well. Our 
purpose is to sketch out this new analysis. 

In $2 we describe the underlying base flow (essentially a free-shear layer) that is 
‘diverging’ or ‘ non-parallel ’, owing to viscous diffusion. The velocity profile associated 
with this flow is assumed to possess an inflection point; therefore, the instability wave 
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is nearly inviscid locally. This will be clear from the equations presented in $2; it is the 
cumulative effect of the small viscous terms that we wish to capture, both for the base 
and perturbed flows. 

In $ 3  we outline the solutions for the perturbations in terms of a high-frequency 
ansatz. A displacement variable tc is used in place of the velocity u. The analysis follows 
that in (B) very closely; we omit most of the details and algebra for brevity. However, 
the present notation differs slightly from that employed in (B), and these differences 
are noted at a couple of places in this paper. A discussion of the results can be 
found in $4. 

2. Formulation of the problem 
Consider an incompressible mixing layer for the base flow with velocity U, and 

pressure pe ,  respectively. The underlying Cartesian coordinate system, x, and the 
geometry of the problem are illustrated in figure 1. All variables are non-dimensional : 
x = (x, y ,  z) and time, t ,  are normalized by a characteristic thickness (= I,,,,) and a 
transit time (= Lref/ U,,,) associated with the mixing layer, respectively. Here, U,, 
denotes a typical fluid speed (say, that in the upper external stream); this is used to 
non-dimensionalize all fluid velocities. As is customary, pressures are measured in 
terms of pU,?,, (,u = const. = fluid density). The relevant Reynolds number is 
Re = UTef L,,,/v >> 1 ,  where v = const. denotes the kinematic viscosity. 

The base flow may be written, to the required order of accuracy, as 

u, = [ I +  o(t2)1 U(Y, 5 , 7 )  + [ I  + 0(-5')1 ~ V Y ,  5,7) e,, 
p H  = const. + 0(2), 

(1 a)  
(1 6) 

where t' = Re-' < 1, (el, e,, e,) denote the unit vectors along the coordinate directions, 
and the component of U along the y-axis vanishes. The slow spatio-temporal variables, 
arising from the viscous diffusion of the base flow, are 

5 = t(xe, +ze,), 7 = st. (1 c)  

It is well known that, under the stated assumptions, the horizontal component of the 
base flow velocity, U, satisfies the boundary layer equations 

where 
D c ?  a 
- = -+ U,.- 
Dt at ax' 

while the physical law of mass conservation requires 

2 
2X 
-. u, = 0 

We shall also use the definition 

which (i.e. the second derivative of U) plays an important role in the stability analysis. 
Note that 9 herein corresponds to F(') of (B). 

Let us assume that this base flow is perturbed by an arbitrary disturbance whose 
(perturbation) velocity and pressure fields are denoted by u = u(x, t )  and p = p ( x ,  t ) ,  
respectively. The relevant linearized equations for these quantities are : 
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FIGURE 1. Geometry of the problem (not to scale). y = cross-space; (x, z )  = propagation space. 

momentum : 

(3 b) 
a 
ax 

continuity: - * u  = 0, 

where V2 denotes the Laplacian operator in (x,y,z) and we have assumed that the 
disturbances are viscous. Our interest is in the case where the perturbations are the 
instability waves of the base flow; quite generally, these waves are nearly inviscid when 
the Reynolds number is larger than about 500 (Betchov & Szewczyk 1963) and the 
base-flow velocity profile possesses an inflection point. 

Since the disturbance equations (3) are non-dimensionalized by characteristic length 
and time scales that are representative of instability modes, the viscous term on the 
right-hand side of (3a) is indeed small. This term represents a small (local) correction 
to the instability modes ; however, its cumulative effect over the long spatio-temporal 
scales, 5 and T is formally of order unity (Hultgren 1992). We shall incorporate this 
effect into the conservation equation for the wave action density, thereby generalizing 
the result of (B). 

3. Wave action density 

velocity u by a displacement variable a = a(x, t )  such that 
In order to obtain this generalization in the simplest way, we replace the disturbance 

Da aU, 
a--. = -- 

Dt ax (4) 

A physical interpretation for a = a(x, t )  is this. Consider a fluid particle of fixed identity 
that occupies the point x (at time t )  in the unperturbed base flow. The position of this 
same particle in the perturbed flow (at time t )  is defined to be (x + a). In other words, 
the particle that would have been at x in the base flow is actually in a slightly different 
position (namely, x+a)  in the disturbed flow. 

There are several ways to obtain (4). Here is a brief formal derivation. The time 
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derivative of [x + a(x, t ) ] ,  at afixed Lagrangian label, is the fluid velocity at (x + a); by 
definition this quantity is [ U,(x + a, t) + u(x +a, t )] .  On the other hand, the direct 
calculation of the above-mentioned time derivative yields [ UB(x, t )  + Da/Dt]. From the 
equality of the last two expressions and the small-disturbance approximation, equation 
(4) follows via Taylor series expansion in a with an error proportional to the product 
of disturbances. 

Using (4) in (3a, b), we obtain 

a 
--.a = 0, 
ax 

where it turns out to be more convenient to leave the viscous term in its original form. 
The error in (5a) is of O(2) ;  this is because of a similar error in the calculation of U, 
as indicated in (1 a). It should be noted that (5 )  is a system of linear partial differential 
equations whose coefficients (i.e. U, in D/Dt and F) vary slowly with x , z ,  and t. 

Clearly then, in order to obtain an asymptotic solution of ( 5 )  when E g 1, we use the 
high-frequency ansatz (essentially a WKBJ method) 

a = a(x, t )  = [a(') +€a(')  + . . .I exp (i$/c) +c.c., (6) 

where i = 2/ - 1 and C.C. stands for the complex conjugate of the term immediately 
preceding it. Similar expansions holds for u andp;  $ = $(<, 7 )  is the complex phase and 
a( j )  = d i ) ( y ,  < ,7 )  for j = 0 , l .  Note that iq5 herein corresponds to q5 in (B). 

After substituting (6)  into ( 5 )  and requiring a non-trivial solution for ( . ) (O)  with 
vanishing values at y = 00, we obtain the evolution equation for the phase, 

where D = 52(k, <,7) is, in principle, a known function of its arguments expressing the 
complex local frequency, w = 52 = -a$/a7, as a function of the complex local wave 
vector, k = V $ .  We call D the dispersion relation and note that V denotes the gradient 
operator in propagation space, 

where 5 = Eel + <e3. Both the frequency and the wave vector, (w,  k) ,  are local in the 
sense that they depend on 5 and 7 owing to the viscous spreading (and possible 
unsteadiness) of the base flow. Because of the inclusion of i = 2/ - 1 in the definition 
of the phase, w herein corresponds to iw of (B). A similar correspondence holds for the 
Doppler-shifted frequency, wo, to be defined below in (8e). 

Furthermore, having satisfied the dispersion relation via (7 a), the lowest-order 
solutions (do), p(O), do)) must be proportional to an instability mode that can be 
supported by the base flow. If p ,  = p,(y, 5,7, k )  is the pressure mode at wave vector 
k ,  then we must have 

(8 a> 

where A = A(5,7)  is the slowly varying complex amplitude of the disturbance. 
Similarly, 

a(') = A(j",~)(Qe,-iw), W - e ,  = 0, (8 b) 

P(O) = A(5,7)pm(y3 c, 7,  V$>, 
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where ( W, Q)  represent the horizontal and vertical components of the displacement 
mode. They are expressible as 

v4 W =  W(y,<,7)  = -- W ;  Pm, 

and p m  on the right-hand sides of (8 c, d )  is to be evaluated at k = V#. The Doppler- 
shifted frequency, wo, is given by 

Wo = W"( y ,  <,7)  = - - + u. V$ (? ) 
The algebra is omitted for brevity; these results are discussed in more detail in (B). At 
this stage of the analysis, the amplitude, A = A(<,7) ,  is an arbitrary function of its 
arguments. 

In order to obtain the evolution equation for the wave action, we must proceed to 
the next order in E .  Here, a(1) and p(l) will obey linear inhomogeneous equations; the 
forcing terms in these equations arise from the variation of the lowest-order solutions 
on the long spatio-temporal scales, < and 7, and the small acceleration of the base flow. 
In addition, the viscous term in (5a) will also contribute to the forcing in the present 
analysis; this is the only new term that has not been discussed in (B). 

Briefly, at O(e), the governing equations for a") and p ( l )  are 

a p  
- W: a(1) + iV$p(') + e2 ~ = terms in (B) +It("), 

ay 
(9 a> 

where R(") represents the new term that arises from the viscous correction in (5a). It 
is convenient to separate this term into its vertical and horizontal components via 

(9 c) R(") = e2 R y )  +iRi,"), e 2 ,  RC") = 0. 

Employing (4) and (€9, we find 

The notation is as follows. The expression 'terms in (B)' stands for those forcing 
terms that have been given already by Balsa (1989); we shall not repeat them here 
because they are lengthy (see (21 a-d)  in (B)) and their contribution to the evolution 
equation for the wave action has been calculated in (B). 

Observe that 

(11) 
a2 

aY 
2 = 7-v$.vq5 

is a representation of the Laplacian operator within the high-frequency ansatz; within 
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this same representation, ooQ and w,, W are suitable time derivatives of the fluid 
displacements in cross and propagation spaces. These derivatives provide the lowest- 
order velocity components in these spaces (essentially do)), with the exception that the 
vertical displacement, Q,  of a material volume in the non-uniform horizontal base flow, 
CJ = V ( y ) ,  also produces a perturbation velocity in propagation space in proportion to 
Q(aU/ay). These effects are clearly contained in (10). 

It is well known that the (-)(l) solutions exist if the forcing terms in (9a, b) satisfy a 
solvability condition. When this condition is applied to the 'terms in (B)', we obtain 
the result for the wave action density as presented in equation (35) of (B). This 
equation, in our current notation becomes 

where d and G are defined below in (14b,d). Roughly speaking, (12) contains the 
effects of inviscid instability modes interacting with slightly inhomogeneous base flows. 
Note that a? herein corresponds to i d  of (B); the amplitude A is the same in both 
instances. 

On the other hand, when the solvability condition is applied to all the terms on the 
right-hand sides of (9a,b) ,  we obtain the equation for the wave action density as 
presented below in (14). This new equation, the main result of this paper, describes the 
effects of slightly viscous instability modes interacting with inhomogeneous base flows. 
Since the solvability condition is linear in the forcing terms, the new equation for the 
wave action contains all the terms presented in (12) plus a new term arising from 
inclusion of R(n) in this condition. This is tantamount to adding the integral (see (31) 
of (B) for the form of the solvability condition) 

to the left-hand side of (12). After some algebra, the final result may be written as 

where 

and 

We recognize G as the (complex) group velocity. The complex function H represents 
the interaction between the (viscous) wave and the non-uniform base flow; in the 
classical theories, H = 0, thereby reducing (14a) to the familiar conservation equation 
for the wave action, a2 (but not the amplitude A).  

We emphasize that the integral in (13) contributes only to the interaction function 
H. Also, there are many equivalent ways of writing this contribution (as well as H 
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itself; see $4). In order to cast (13) into a simple and useful form, it is necessary to recall 
that (w ,  Q) satisfies Rayleigh’s equation for the vertical velocity, the pressure mode, p m ,  
satisfies Rayleigh’s equation for the pressure, and Q and Ware expressible in terms of 
p m  via (8 c, d).  The accompanying algebra is reasonably straightforward but, perhaps, 
not entirely trivial. 

4. Discussion and conclusions 
In summary, (14a) provides the evolution equation for the complex wave action 

density, d, of viscous instability waves interacting with slightly inhomogeneous base 
flows arising from the viscous diffusion of the latter. The complex interaction function, 
H ,  contains additively both the cumulative effects of the inhomogeneity and those of 
the viscous correction to the wave. Note that (14a) is to be solved ‘simultaneously’ 
with the equation for the phase, (7a) ,  in order to provide c‘Q/& and Vq5 in the former 
(though, strictly speaking, these equations are decoupled in the linearized theory). 

It is instructive to recast the numerator of (14c) in a form that separates the effects 
of the base flow inhomogeneity from those of the viscous correction for the waves. 
After using some of the tricks mentioned at the end of $ 3  and performing a couple of 
integrations by parts, we find 

where the first term on the right-hand side of (1 5)  is in complete agreement with the 
‘inviscid’ result in (12). Clearly, the second term is entirely responsible for the viscous 
correction to the instability waves. 

Unfortunately, calculation of the terms in (15) can be done only numerically: it 
entails solving the boundary layer equation (2) for U, solving the inviscid Rayleigh 
equation for the dispersion relation 52 = Q(k, 5 , 7 )  and for the displacement modes Q 
and W, obtaining the phase q5 = q5(5, 7) via (7 a), and then evaluating the integrals in 
( 1  5) numerically. This is beyond the scope of the present work. 

Nevertheless, it is possible to analytically calculate the terms in (1 5 ) ,  as well as those 
in (14c), for a special case. In order to do this, we think of H = H(<,T) as a function 
(say, 2 )  in the extended space (k ,  5,7) ,  where 

k .  J I : 9 ( Q 2 +  W -  W)dy 

%(Q2 + W .  W d y  ’ 
2 = X ( k ,  5, 7) = += ( 1 6 4  

and the inviscid displacement modes, Q and W, are to be obtained at wave vector k .  
In addition, 

so that H = H(5,7) = 2 ( V q 5 , 5 ~ )  (16c) 

with the understanding that 
The special case alluded to previously occurs when, at the point and time of interest 

(which define 5 and T) ,  

and the local mode is precisely neutral: k - k = 1 (Michalke 1964). In this case, we have 
closed-form solutions for the modes and the (singular) integrals given above may be 

52, = 52-k*U (166) 

= -O(V$, 5 , ~ ) .  Similar remarks hold for (15). 

U = (tanh y )  e,  (170) 
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evaluated analytically by a well-known contour deformation in the complex y-plane. 
The result is 

2-f = 0. (17b) 

Evidently, the contributions to A? arising from the effects of the base flow 
inhomogeneity and those of the viscous correction to the instability mode (as separated 
out in (15)) cancel in this special case; these contributions are f 8 ,  respectively. This 
suggests that there may be a (partial) cancellation arising from these two effects, even 
in the general case. Very roughly, we expect the inhomogeneity of the base flow to be 
responsible for an increase in the wave action and the viscous correction to the 
instability to produce a decrease in d.  
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